Space-borne and Ground Observations of Ionospheric/ Atmospheric Signals Associated with Major Earthquakes

Dimitar Ouzounov^{1,2}, Michel Parrot³, Sergey Pulinets⁴, J. Y. Liu⁵, Katsumi Hattori⁶, Menas Kafatos¹, George Anagnostopoulos⁷, K. Ohyama⁶, S. Kon⁶, Patrick Taylor² <u>ouzounov@chapman.edu</u> /*Dimitar.P.Ouzounov@nasa.gov*

¹ Chapman University, One University Drive, Orange, CA 92866, USA
²NASA Goddard Space Flight Center, Greenbelt, MD 20771,USA
³LPC2E/CNRS Orléans, France
⁴Institute of Applied Geophysics, Rostokinskaya str., 9, Moscow, 129128, Russia
⁵National Central University, Chung-Li, Taiwan
⁶Chiba University, Chiba, Japan
⁷Democritus University of Thrace, Greece

Contents

- 1. Validation of atmospheric earthquake precursors. LAIC model
- 2. Statistical studies of atmospheric earthquake precursors-Greece, Taiwan and Japan
- 3. Case studies

M7.9, Wenchuan, May 12th,2008, China M7.0, Haiti, January 12th,2010, Haiti M6.7, L'Aquila, April 6th, 2009, Italy

M9.0, Great Tohoku Earthquake, March 11th, 2011, Japan

5. Summary

Where we are now

Methodology of the precursory signals we are investigating

Understanding the relationship ship between several Geophysical signature

Thermal infrared NOAA/AVHRR,AQUA/AIRS OLR

Clouds information MODIS,GOES, METEOSAT

Ionospheric variability DMSP,DEMETER

Radon/ Gas variations

2nd DEMETER workshop, Oct 10-12, 2011, Paris

Total Electron Content GPS, COSMIC

Data Integration Sensor Web

Schematic presentation of the LAIC model

Statistical studies of Atmospheric precursors. Data Selection Greece, Taiwan and Japan

5

2003-2009 – 6 major events in Greece,9 in Taiwan, 15 in Japan and most recent 2009-2010 earthquakes been selected - total of 30 earthquakes (M>5.9)

Cross- validation of earthquake related signals

#	Catalog	Region	Date					L/W	OLR	Rn	AirTemp	GPS/TEC	DEMETER
	#			Lat	Lon	м	Denth		[days]	[days]	[days]	[days]	
1	47	Japan	2004/9/5	33.18	137.07	7.4	<u>10</u>	Water	-4	-4		-3	
2	51	Japan	2004/10/27	37.28	138.88	6	14	Land	-3	-3		-2	
3	56	Japan	2005/3/20	33.81	130.13	6.6	10	Water	-5	-5		-4	
4	58	Japan	2005/7/23	35.5	139.98	5.9	61	Water	-4	-4		-4	
5	68	Japan	2007/7/16	37.53	138.45	6.6	12	Water	-4	-4		-4	- 12 hours
6	14	Taiwan	2006/12/26	21.8	120.55	7.1	10	Water	-5			-2	- 10 hours
7	15	Taiwan	2006/12/26	21.97	120.49	6.9	10	Water	-5			-2	- 10 hours
8	1	Italy	2009/04/06	42.42	13.39	6.3	10	Land	-3	-7/-1	-3/-1	-1	
9	2	Samoa	2009/09/29	-15.5	172.0	8	18	Water	-4		-	-4	-4, 3,1 days
10		Haiti	2010/01/12	18.5	-72.5	7.0	13	Land	-4			-1	-3 days
10 5 0			40 - 30 - 20 - 10		B 6 4				ی اندها ومنطقانافان (موسط و (د)	Number of earthquakes			
-10	-5		, 3		2	-0			- 4		-9 -8 -7 -6	-5 -4 -3 -2 -1 Time lag (days)	

A. GPS/TEC over Taiwan (1996-2000) show a systematic TEC enhancement 2-5 days in advance (Liu et al., 2003); B. DEMETER data electric field in the VLF range (1-10 KHz) showing a systematic decrease of the intensity during nighttime, 4-6 hours prior to 9000 earthquakes of (M> 5) for period 2004-2011, (Pisa et al, 2011); and C. Thermal radiation for M>5.9 (2003-2008) over Japan and Taiwan. (Ouzounov et al., 2009)

Atmospheric Processes Associated with some of Greece **Earthquakes**

24

26

1.2 1.4 1.6

E Index

20

0.0 0.2 22

0.4 0.6 0.8 1.0

OLR anomaly

-2 days

(Med.Sea)

Atmospheric Processes Associated with some of Greece Earthquakes

The Atmospheric-Ionospheric Response to M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations

M7.9 Wenchuan Earthquake, China 2008Hot-spot alerts around M7.9 Thermal Infrared maps of daily night-time earth outgoing radiation over epicenter of M7.8 Eastern Sichuan,

China May 3- May 14, 2008,

DEMETER meeting, Oct 10-12, 2011, Paris

OLR Time series, GPS/TEC and DEMETER electron density profile

2nd DEMETER workshop, Oct 10-12, 2011, Paris

GPS/TEC M7.9 Wenchuan Earthquake, China 2008

GPS/TEC and DEMETER M7.9 Wenchuan Earthquake, China 2008

GPS/TEC data

Modeling EQ effects by generating Electrical field

Time-Latitude diagram for night-time of OLR hot spots and DEMETER electron density over the epicenter of M7.0 Haiti earthquake

^{2&}lt;sup>nd</sup> DEMETER workshop, Oct 10-12, 2011, Paris

Parrot, 2010

IGR GPS/TEC, JAN 11, 2010

M7.0 Haiti of January 12th,2010

TEC difference with previous 10-days mean Source: IGR Center: Haiti Date: 2010.01.11 UT: 20:00:00

2nd DEMETER workshop, Oct 10-12, 2011, Paris

Atmospheric Processes Associated with the M8.0 Samoan EQ September 29, 2009. OLR hotpots night-time maps 09.24.2009 09.25.2009 09.26.2009

Time-Latitude diagram for night-time of OLR hot spots (NASA Aqua/AIRS) over theM7.9 Samoa earthquake of Sept 2009 with start -M7.9, circles- aftershocks for 09.29-09.30.2009

What we have learned from L'Aquila EQ?

Time series atmospheric variability observed from January 1- April 30, 2009 within a 100 km radius of the L'Aquila earthquake (top to bottom)

Foreshocks period \Leftrightarrow short-term earthquake atmospheric precursors – are they represent the same physical process?

Points to take home

- 1. DEMETER plasma data have shown a unique support in order to explain the most of the observed atmospheric variations observed before the earthquakes
- 2. We use Multi sensor data to study earthquake. The primary reason the complex and dynamic nature of the earthquake hazard risk on global scale requires spatial, spectral, and temporal coverage that is far beyond any single satellite mission.
- 3. We have systematically analyzed the transient features of thermal atmospheric field associated with 30 major earthquakes (M>5.9) in Greece, Taiwan, Japan, Italy and Samoa by using NOAA POES, DEMETER and NASA EOS Aqua..
- 4. Our findings demonstrate the presence of related variations of these parameters implying their connection with the earthquake preparation process
- **5.** Sensor Web approach was used to start automatic identification of earthquake precursors

References

- Ouzounov D., S. Pulinets, A. Romanov, A. Romanov Jr., K. Tsybulya, D.Davydenko, M. Kafatos and P. Taylor (2011) Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Reviled by Joined Satellite and Ground Observations, <u>http://arxiv.org/abs/1105.2841</u>, Earthquake Science (in print)
- Ouzounov D., S. Pulinets, K, Hattori, M. Kafatos and P. Taylor (2011) Atmospheric Response to Fukushima Daiichi NPP (Japan) Accident Reviled by Satellite and Ground observations, <u>http://arxiv.org/abs/1107.0930</u>
- Pulinets,S,.D.Ouzounov (2011) Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model an unified concept for earthquake precursors validation, *Journal of Asian Earth Sciences*, vol. 41, issue 4-5, pp. 371-382
- **Ouzounov D**., S. Habib and S. Ambrose A (2008) Multisensor approach analyzing atmospheric signals for possible earthquake precursors. Application of Remote Sensing for Risk Management, In the book "Risk Wise", International Disaster and Risk Conference (IDRC) Davos, Switzerland, Tudor Rose, 2008, 162-165
- Ouzounov D., D. Liu, C. Kang, G.Cervone, M. Kafatos, P. Taylor, (2007) Outgoing Long Wave Radiation Variability from IR Satellite Data Prior to Major Earthquakes, *Tectonophysics*, <u>431,1-4</u>, 20, 211-220
- Parrot M. and **D.Ouzounov**,(2006),Surveying the Earth's Electromagnetic Environment From Space, *EOS, Transactions of American Geophysical Union*,26 December,Vol.87, 52, 595
- Pulinets S., D. Ouzounov, L. Ciraolo, R. Singh, G. Cervone, A. Leyva, M.Dunajecka, Karelin, K. Boyarchuk, (2006), Thermal, Atmospheric and Ionospheric Anomalies Around the time of Colima M7.8 Earthquake of January 21, 2003, *Annales Geophysicale*, 24, 835-849
- **Ouzounov D**., N. Bryant, T. Logan, S. Pulinets, P.Taylor, (2006), Satellite thermal IR phenomena associated with some of the major earthquakes in 1999-2004, *Physics and Chemistry of the Earth*, 31,154-163

Thank you! Questions? Send me an email ouzounov@chapman.edu