Detecting Seismic Anomalies within NOAA OLR data and DEMETER EM data Using Wavelet Transformation and Holder Exponents

Dr Yaxin Bi

School of Computing & Mathematics University of Ulster, United Kingdoms

The Second DEMETER Workshop, Paris, France 10th – 12th October 2011

Overview

- Project background
- Methodology
- An application in detecting anomalies associated with the Wenchan and Puer earthquakes
 - > OLR data observed by NOAA-8
 - Electromagnetic (EM) data recorded by DEMETER
- Summary

Research background

- A collaborative project of "data mining with multiple parameters constraints for earthquake study" between the University of Ulster, U.K and Institute of Earthquake Science, China Earthquake Administration (CEA)
- The aim of the project was to investigate associations between precursors identified from OLR and EM data with earthquake cases by using a range of data analysis methods, such as wavelet transforms, Holder exponent, and so forth

Identify seismic anomalies by wavelet and Holder Exponents

- Analyzing data sequences of grids and orbits using db1 (Daubechies) and (Gaussian) gaus3 wavelet methods.
- Identifying wavelet maxima for each of the scales predefined
- Generating a line of wavelet maxima along the scales over the grids.
- Measuring the space and time continuity of the lines of wavelet maxima in terms of singularity
- Decomposing data sequences into multi-signals based on the different scales
- Identifying seismic anomalies.

Plot of coefficients over time

The curves of wavelet maxima

7

Magnitude 8.0 - Wenchuan Earthquake

Date-Time May 12, 2008 at 02:28:01 PM **Epicenter** Location 30.986° N, 103.364° E Region **WENCHUAN** SICHUAN, **CHINA**

ORL Data

 Daily means of Outgoing Longwave Radiation (OLR) data from NOAA-18 (National Oceanic and Atmospheric Administration)

Spatial coverage is 1 degree latitude by 1 degree longitude global grid and 30°N - 33°N, 103°E -106°E.

From 28th September 2007 to 27th September 2008

Maxima curves of the Wenchuan _______region

Maxima curves of the Region 1

Wavelet maxima analysis curves of the Region 2

Wavelet Maxima Of OLR DayTime Data From Grid1 to Grid9 Of Region 2 : Years 2007/2008 | Wavelet method:gaus3

Holder exponent associated with Region 1

Data selected from DEMETER

- The abnormal events are identified on the basis of obvious synchronous perturbations on the physical parameters of interest at the same time interval in the same orbit from level 2 data provided by DEMETER
- I1 days data are selected (10 days prior to earthquakes and one day post earthquake occurrence).

Epicenter as a central point of a studying area and 1888km a diameter, to select all the orbits within in 11 days.

Data selected from DEMETER (cont'd)

The studied physical parameters include below

17

- electron density (Ne) measured by ISL
- electron temperature (Te) measured by ISL
- ion density (Ni) measured by ISL
- ion Temperature (Ti) measured by IAP

Data selection (cont'd)

- Earthquakes
 - Puer earthquake: orbits 5440_1, 15454_1, 15542_1, 15572_1 and 15558_1
 - Gaize earthquake: orbits 18716_1 and 18804_1
 - Wenchuan earthquake: orbits 20565_1 and 20595_1
 - Jiujiang earthquake: Orbit 07380_1
- Experimental results below are only orbit 15440_1

Orbit 15440_1 in Level 2

Plot of parameters of Ne, Te, Ni and Ti

Wavelet maxima of the parameters of 5-8 magnitudes by db1

Maximas Of DEMETER Level-1 Data Date:May 24,2007| Orbit:15440-1| Wavelet method:db1| Scales:16

е Ч 15:08:07	000000000000000000000000000000000000000	8 88 88 00 8 88 88 80 8 8		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000000000000000000000000000000000000				15:41:52 / 70.8
13.00.01	/ -30.1		13.13.307 -23.1	13.13.22 / -10.2	13.22.347 3.214	13.20.007 10.10	13.30.31 / 30.23	13.34.037 43.00	13.31.017.31.32	13.41.32 / 10.0.
ISL NI	*****									
15:08:07	/ -50.7	15:11:79 / -37.2	15:15:50 / -23.7	15:19:22 / -10.2	15:22:94 / 3.274	15:26:66 / 16.78	15:30:37 / 30.29	15:34:09 / 43.80	15:37:81 / 57.32	15:41:52 / 70.83
ISL Te										
15:08:07	/ -50.7	15:11:79 / -37.2	15:15:50 / -23.7	15:19:22 / -10.2	15:22:94 / 3.274	15:26:66 / 16.78	15:30:37 / 30.29	15:34:09 / 43.80	15:37:81 / 57.32	15:41:52 / 70.83
IAP Ti			000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000			
15:08:10	/ -50.5	15:11:82 / -37.0	15:15:54 / -23.5	15:19:26 / -10.0	15:22:97 / 3.474	15:26:69 / 16.98	15:30:41 / 30.49	15:34:12 / 44.00	15:37:84 / 57.51	15:41:56 / 71.0
		$\begin{array}{c} \text{Magnitude of Ai} \\ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$	nomaly 6 7 8		Universal II	me į Latitudė				

Wavelet maxima of the parameters of 5-8 magnitudes by gaus3

Maximas Of DEMETER Level-1 Data Date:May 24,2007| Orbit:15440-1| Wavelet method:gaus3| Scales:16

H g 15:08:07 / 50.7 15:11:79 / 37.2 15:15:50 / 23.7 15:19:22 / 10.2 15:22:94 / 3.274 15:26:66 / 16.78 15:30:37 / 30.29 15:34:09 / 43.80 15:37:81 / 57.32 15: H g H g H g H g H g H g H g H g	15:08:07		15:		37.2 37.2										5:22	00000000000000000000000000000000000000	3.27								37//									7.81		32		
	15:08:07	/ -50.7	13.	0000 0000 0000 0000 0000 0000 0000 0000 0000	-51.2 000000000000000000000000000000000000		15:1:	5:50 /	-23.	7	13.	19:22	J.2		15:22	.94 / 	3.27	4	15	:26:6	5 / 16	.78		13.30	37 / :	30.29		15:	34:09	/ 43	.80		15:3	7:81	/ 57.	32	15	
	IAP Ti				•	00000000	0000			00000000000000000000000000000000000000	000000000000000000000000000000000000000	1	xxxxxxxxxxxxx	000000000000000000000000000000000000000	0					000000000000000000000000000000000000000						000000000000000000000000000000000000000	,		00000	<u></u>		xooqoo xoo x		000000000000000000000000000000000000000		0		

Wavelet approximation of studied physical parameters

Wavelet details of studied parameters

Holder exponents of studied parameters

Summary

- The wavelet modulus maxima and Holder exponent can be used as effective techniques to detect concept drifting or changes within data sequences
- The case studies show the method proposed appears to be more effective on Outgoing Longwave Radiation and Electromagnetic data
- The rest results are similar to these obtained for Puer earthquake, which pose a challenge to us for deep studies on our methods
- Cross-validation could be a promising approach for detecting seismic anomalies

Thank you ! and questions?