<u><u></u>[≜]UCL</u>

TwinSat:

A Russia-UK satellite project to study ionospheric disturbances associated with earthquake and volcanic activity

Vitaly Chmyrev¹, Alan Smith², Dhiren Kataria², Boris Nesterov³, Christopher Owen², Peter Sammonds⁴, Valery Sorokin⁵, Filippos Vallianatos⁶

¹ Schmidt Institute of Physics of the Earth (IPE), Russian Academy of Sciences, 10, B. Gruzinskaya Str., 123995 Moscow, Russian Federation

² Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

³ JSC Design Bureau POLYOT, Omsk, Russia

⁴ Institute of Risk and Disaster Reduction, University College London, Gower Street, London, UK

⁵ Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN), 142190 Troitsk, Moscow region, Russian Federation
⁶Laboratory of Geophysics and Seismology, Technological Educational Institute of Crete, Chania, Crete, Greece

<u><u></u>⁺UCL</u>

IRIS

Earthquake impact

- Haiti (2010) 316,000 dead, 1,000,000 homeless
- 1 million death earthquake expected this century
- Kobe (1995) \$100 billion
- Sichuan (2008) \$150 billion
- Sendai (2011) \$265 billion (\$100 billion in insurance losses) - Impacted global economy

^{**DCL**}

LAI Evidence

- Enhancement of seismic activity produces DC electric field disturbances in lonosphere over areas of 100s km diameter
- ULF geomagnetic field oscillations detection in the ionosphere
- Small scale plasma density irregularities with correlated ELF emissions
- VHF electromagnetic radiation is generated in the atmosphere (1-10km) over the quake zone

^{**DCL**}

LAI Evidence

- Seismic-related disturbances in the troposphere create the conditions for over-horizon propagation of signals from ground stations on routes passing over earthquake area
- Anomalous effect in Shumann resonance phenomena
- Outgoing IR (8-12 microns) anomalies in the atmosphere
- Changes to total water vapour column and aerosol parameters, and ozone concentration.
- Concentration of charged soil aerosols and of Radon gas

LAI Process

DCL

DC electric field reaching the breakdown value in lower atmosphere causes:

- Chaotic electrical discharges
- Heating and IR emission
- Broadband VHF emission
- Airglow in visible range
- Refraction and scattering of VHF => over the horizon reception

DC field in ionosphere may cause instabilities resulting in:

- Periodic or localized structures in the form of solitary dipole vortices or vortex chains
- Associated plasma density and electrical conductivity disturbances
- Magnetically aligned currents and plasma layers stretched along the geomagnetic field.
- ULF magnetic field oscillations
- Electron number density fluctuations
- ELF electromagnetic emissions
- Schumman-resonance-like anomalous line emissions

TwinSat

- As part of the UK celebration of Gagarin50 a Russian delegation visited the UK in June 2010
- As a result a proposal for a very low cost space mission involving a Russian micro satellite and a UK nano satellite has been developed

^{**DCL**}

Programme Stages

Stage 1 – Research and Development

•Phase 1 – Development and Launch of TwinSat

- Demonstration of two satellite approach to improve discrimination of earthquake precursor signals from other disturbances
- Acquisition of precursor data from a wide variety of instruments, space and ground
- Analysis of TwinSat data to determine optimum prediction algorithm

Stage 2 - Implementation

•Phase 2 – Design of early warning satellite constellation and ground segment

•Phase 3 – Development and commissioning of early warning constellation

•Phase 4 – Operations of an early warning constellation

Stage 1 Objectives

- To validate current experimental findings and theoretical models addressing the short-term earthquake precursors through specialized and coordinated twin-satellite and ground based observations;
- To develop a comprehensive theoretical model describing the formation and interconnection of the precursor signals and the causal mechanism(s) (if present) between the driving seismic activity and the ionospheric signatures;
- To search for new precursory signals and estimate potential for accuracy improvement of forecasting the time and position of impending earthquakes;
- To determine the feasibility of a follow-on satellite constellation for reliable earthquake prediction taking into consideration the danger of false alarms and ambiguity;
- To evaluate possible 'earthquake occurrence probability algorithms' based on the above results.

Programme elements

- Space Sector (TwinSat)
 - Micro-satellite TwinSat-1M
 - Nano-satellite TwinSat-1N
- Ground Sector
 - Science stations in earthquake regions including Kamchatka
- Data Centre
 - Accessible, open, supported
- Modelling
 - Coordinated LAI modelling

DCL

TwinSat-1M

Characteristic	Value
Satellite dimensions (without booms)	46 diam x 53 cm
Mass (including payload)	~40-50 kg
Mass of separation system	2.8 kg
Power	
Average	90 W
Maximum	140 W
TwinSat-1N separation velocity	
Linear	3 cm/s
Angular	< 6º/s (TBD)
Attitude Control	3-axis, 8 arc min stability
Orbit	800 km, Sun-synchronous, 98.6° inclination,
	100min period
Telemetry to ground	
Fast channel (X-band)	>50 Mbit/s
Slow channel (145/435 MHz)	20 Kbit/s
Onboard memory	>5 Gbyte
Inter-satellite link frequency	2-3 GHz (TBD)
Active lifetime	>3 years

TwinSat-1M Elements

- Onboard Control Complex (OCC) including the radio channel unit with antennas, central controller, user navigation device with antenna, power module, telemetry commutation, optional GLOBALSTAR modem interface modules and harness;
- Attitude Control System (ACS) including; the actuator unit with the ACS controller, driver-flywheels (6 units) module, and the electromagnetic devices, startracker, two digital sun sensors and 6 sensors for the preparatory orientation on the Sun , fluxgate magnetometer and harness;
- Power supply system (PSS) including the Gallium Arsenide solar cell array, Ni-MH battery, controller and harness;
- Temperature Control System (TCS) including electrical heater, heat insulation, radiation surfaces, temperature sensors and harness;
- Spacecraft structure including frame and booms;
- TwinSat-1N separation system.

TwinSat-1M Science Measurements (prelim)

- Vector of DC electric field, +/- 250 mV/m, resolution 0.5 mV/m;
- Spectral and wave characteristics of 6 electromagnetic field components in ULF/ELF range (0.5 – 350 Hz);
- Spectrum of electric field oscillations in ULF/ELF and VLF/LF (3-300 kHz) ranges; amplitude and phase variations of ground based VLF/LF transmitter signals;
- Spectrum of magnetic field oscillations in VHF range (26 48 MHz);
- Variations of thermal and super thermal (0.3 20 eV) plasma parameters;
- Energy distributions of electron and ion fluxes with energies 0.3 300 eV for two directions, time resolution 0.1s;
- Lightning activity in the sub-satellite regions (optical measurements) needed to discriminate against lighting-related events.
- IR Imager (to be decided)

TwinSat-1N

Characteristic	Value
Dimension	10 x 10 x 22 cm
Mass	2.5 kg
Power Average Peak	2.2W 4.0W
Attitude control	3 axis stabilized, ~1º accuracy
Intersatellite Link frequency	2.4 GHz
Telemetry to TwinSat-1M Fast channel (1.7-2.7 GHz)	64 kbps
Telemetry to Ground Slow channel (145/435 MHz)	4.8 kbps
Active livetime	>3years

Figure 4. TwinSat-1M

TwinSat-1N Science Measurements (prelim)

- Variations of thermal and super thermal (0.3 20 eV) plasma parameters;
- Energy distributions of electron and ion fluxes with energies 0.3 300 eV for two directions, time resolution 0.1s;
- Wave form of ULF/ELF magnetic field oscillations (0.5 350 Hz), one or two components.

In-situ Plasma Instrumentation

- Strong plasma instrumentation heritage
 - Magnetospheric missions: Cluster, Double Star, Polar
 - Planetary environments: Cassini, Mars and Venus Express, Mars 96 (launcher failed)
 - Cometary studies: Giotto
- Top-hat with enhanced capabilities
 - Solar Orbiter EAS
 - Baseline for EJSM, L-Depp
 - Other studies: MMS, Cross-scale
- Strong instrument development programme and state-of-the-art test and calibration facilities

<u><u></u>UCL</u>

Instrument Miniaturisation

- Aggressive development programme
- Low resource analyser development using MEMS-based (Micro-Electro-Mechanical Systems) fabrication techniques
- Generic technologies suitable for creating highly integrated "matchbox" sized analyser systems: small, low resource, more capable
- Technology demonstration on UK TechDemoSat mission (2012)
- Strongly linked to CubeSat R&D programme

High temporal resolution proof-of-concept analyser

Infrared Measurements

 Outgoing long wave (8-12 µm) radiation intensity and thermal images of seismically active zones.

Measurements from other Space Assets

- Space Weather monitoring to be able to take account of magnetospheric effects.
- Spatial strain maps of potential earthquake areas from InSAR data

Walters

Ground Measurements

- Atmospheric gas composition;
- Radon emission and variations of radioactivity;
- Dynamics of aerosol injection;
- Atmospheric DC electric field and current variations;
- Spectral and wave characteristics of ULF/ELF/VHF electromagnetic emissions including the arrival direction finding and locating the radiation sources;
- Remote sensing of ionospheric disturbances through the registration of amplitude and phase variations of VLF/LF signals from groundbased transmitters at appropriate propagation routes;
- Seismic and magnetic field oscillations.

DCL

 We believe this to be an exciting, low-cost opportunity to study a very important phenomena which could ultimately lead to more effective earthquake and volcanic eruption prediction.

TwinSat

Thank You