

Wang Lanwei
Working Group of China Earthquake-related Satellites Mission
China Earthquake Administration

Outline

- Project Objectives of CSES
- Scientific Payloads Selection
- Orbit Parameters
- Design of the Platform
- CSES Ground Segment
- The Status of CSES
- Future Plan

Project Objectives of CSES

China Seism-Electromagnetic Satellite (CSES) is proposed to be the first experimental satellite for earthquake-related electromagnetic emission monitoring from ionosphere and make technical preparation for future operational satellite monitoring system in China.

The objectives of the Project CSES are described in the following aspects:

scientific, engineering and application ones

Scientific objectives of CSES

The objectives in the scientific aspect of the project are:

- •To study the ionospheric perturbations possibly associated with earthquakes, specially with those destructive ones.
- •To explore the new approaches for short-term and imminent prediction, as well as to find a new orientation for the theoretic studies on the mechanism of the earthquake preparation processes

Engineering objectives of CSES

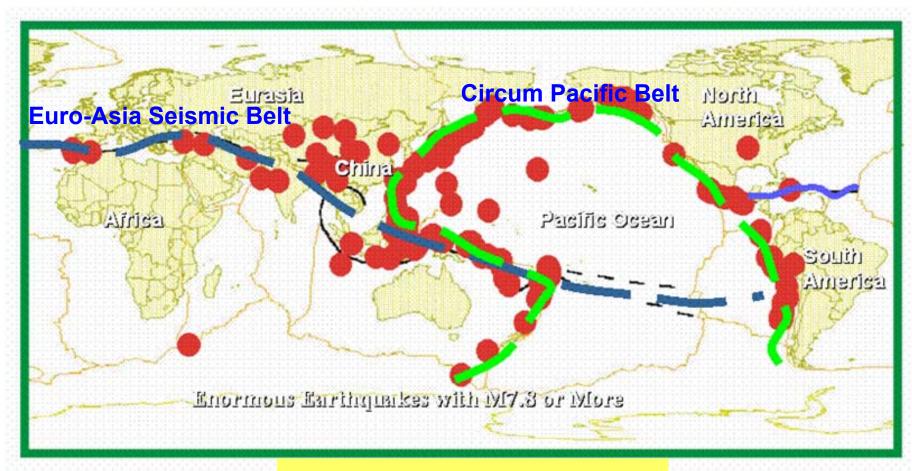
The targets in the engineering aspect of the project are as follows:

- •To check the reliability and effectiveness of the proposed electromagnetic satellite monitoring system by utilizing a set of new techniques and equipments,
- •To obtain world-wide data of space environment of the electromagnetic field, plasma and energetic particles, specially those ones of the real-time observation when the satellite over the Chinese territory
- •To provide a good bases for pushing forward a well jointed space-ground system in earthquake monitoring in the near future in China.

Application objectives of CSES

The purposes for the aspect of application of the project are:

- •To extract the electromagnetic information associated possibly with the earthquakes of Ms≥6 within Chinese territory and its neighboring area and that of Ms≥7 in the global scale.
- •To analyze the features of seismo-ionospheric perturbations, in order to test the possibility for short-term earthquake forecasting experimentally in terms of satellite observation
- To provide the data sharing service for international cooperation and scientific community

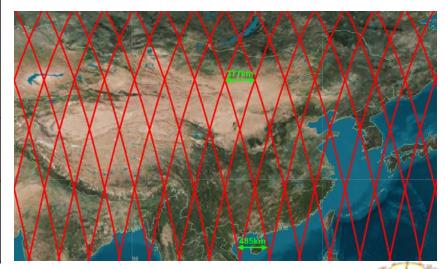


Scientific Payloads

In order to fulfill the objectives of CSES, 8 scientific payloads are selected for CSES:

Physical Parameter	Payloads	Main Specification
Electromagnetic Field	Search Coil magnetometer	Frequency Range: 10Hz ÷ 20 kHz
	Fluxgate Magnetometer	Frequency Range: DC ÷ 15Hz
	Electric field detector	Frequency Range: DC ÷ 3.5MHz
Plasma Construction	GNSS Occultation Receiver	Tomography and TEC by GNSS Occultation Signal
	Tri-Frequency Transmitter	Tomography and TEC by VHF/UHF/LF Signal
In situ Plasma	Plasma analyzer	Composition: H ⁺ , He ⁺ , O ⁺ Ion density: 5×10 ² ÷ 1×10 ⁷ cm ⁻³ Ion temperature: 500K÷ 10000K
	Langmuir probe	Electron density: $5 \times 10^2 \div 1 \times 10^7 \text{ cm}^{-3}$ Electron temperature: $500 \text{K} \div 10000 \text{K}$
Energetic Particle	Energetic particle detector	Proton: 3MeV ÷ 200MeV Electron: 200KeV ÷ 10MeV

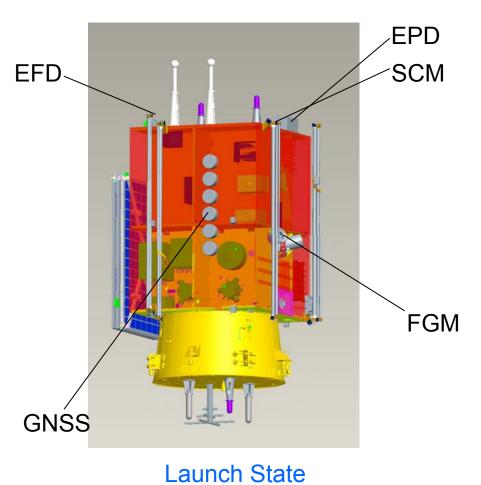
Operating Mode

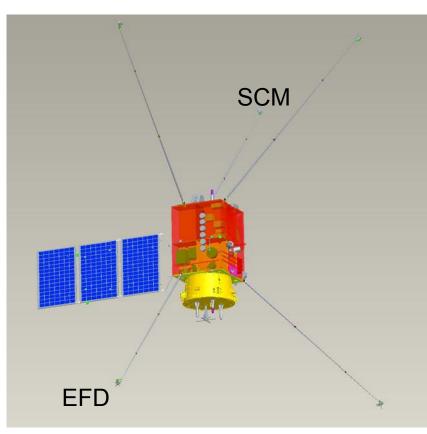

key monitoring Area

Orbit Parameters

Based on the EM monitoring requirements and the operational experience of existing EM satellites.

Style of orbit	Sun synchronous orbit
Altitude (km)	507
Inclination (deg)	97.4°
Period (min)	94.6
Local time of descending node	14:00pm
Revisiting period (day)	5

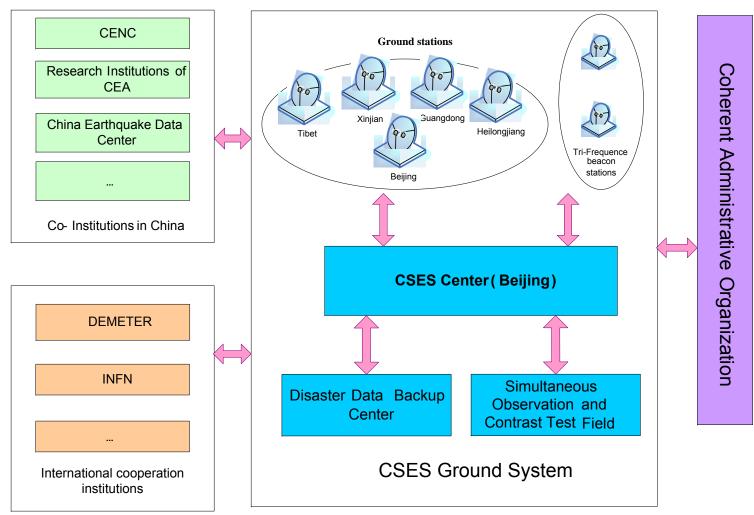



The design of the platform

The platform module is redesigned upon the CAST2000

Structure of the platform

Flying State



Main Specifications of platform

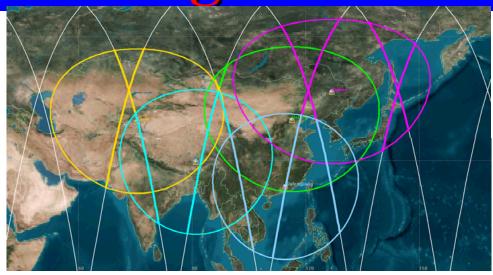
- Earth Oriented 3-axis stabilized Control Mode
- X Band Data Transmission for Scientific Data.
- Satellite Mass: ~450kg.
- Life Span: 5 years.

CSES Ground Segment

CSES Ground Segment

Satellite ground receiving

station: Beijing, Xinjiang,


Heilongjiang, Guangdong, Tibet.

Beijing: For All Data


Others: Real time Data

Tri-Frenqucy beacon stations:

32 stations along the North China seismic area and North-South seismic belt.

Satellite ground receiving station

Tri-Frenqucy beacon stations

The Status CSES PROJECT

- CSES Project was sponsored by:
 China National Space Administration (CNSA)
- Administrated by:
 China Earthquake Administration (CEA)
- Executed by:
 - Ground Segment : CEA
 - Satellite: DFH Satellite Co.LTD
 - Rocket: Aerospace Engineering Institute of Shanhai
 - Launch Jiuquan Satellite Launch Centre
 - Other relevant units

The Status of CSES Project

- CSES satellite is now under developing with collaboration with several countries.
- It propose to be launched before the end of 2014.

The Status of CSES Project

1. Data Policy in Comments

CSES standard scientific data will be free available for the world under the framework following

- international scientists work team will be founded for the data application and evaluation
- Registered scientific Users

The Status of CSES Project

2.International Cooperation Interesting

- Data processing methods developing
- Lithosphere-Atmosphere-Ionosphere (LAI) coupling models developing
- The key techniques facing the following constellation
- Ground Segment cooperation (Include sharing the concerned ground station and establish tri-frequency beacon receiver array)
- To organize multilateral research mechanism.

Future Plan

After the first CSES satellite, It is expected that a functional electromagnetic monitoring system could be systematically arranged.

Future Plan

CSES Requirement Satellite

- Most of the requirements in terms of elements, spatial resolution and key region monitoring are satisfied.
- But there are still some key requirements could not be fulfilled:
 - Only 4-5 days temporal resolution could be
- >1 satellite is needed -> Constellation

"2+2" Constellation

- Constellation solution for temporal resolution
- Minimize the probability any EM disturbance is missed.
- In 2017, a 2-satellite constellation on 500km orbit is proposed for in situ observations.
- Ionosphere plasma profile acquisition issue
- "Top Ionosphere Detector" equipment should be used at the top of ionosphere (Around 1000km).
- In 2020, a 2-satellite constellation is proposed for 1000km orbit.

Thanks to:

- CNES, FRANCE
- DEMETER Mission Center, FRANCE
- IZMIRAN, RUSSIAN
- INFN, ITALY
- Other institutes

Thanks for your attention!

